

Triangle ABC is circumscribed by a circle whose centre is placed at O such that AOC form the diameter of the circle, which runs along the x-axis. AOC is subtended at B. Line $A B$ is extended so that it runs through the points $(0,-2)$ and $(16,12)$. Point D is a point on the extended line $A B$ such
 is the area of the circle outside the triangle $A B C$?

To find the equation of the line $A B$:

The line is a straight line and so has the general equation $\mathrm{y}=\mathrm{mx}+\mathrm{c}$.
c forms the intercept and is therefore (-2)

$$
\begin{aligned}
& m=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)} \\
& =\frac{(12-(-2))}{(16-0)}
\end{aligned}
$$

$$
m=\frac{7}{8}
$$

So the equation for the line $A B$ is

$$
y=\frac{7}{8} x-2
$$

To calculate point A:

$$
\begin{gathered}
y=\frac{7}{8} x-2 \\
y+2=\frac{7}{8} x \\
\frac{8(y+2)}{7}=x \\
\frac{8(0+2)}{7}=x \\
x=\frac{16}{7}
\end{gathered}
$$

So the co-ordinates of point A are $(16 / 7,0)$.
To calculate the diameter of the circle:

$$
\begin{aligned}
\text { Diameter of the Circle } & =x_{C}-x_{A} \\
& =9-(16 / 7) \\
& =6 \frac{5}{7} \\
& =\frac{47}{7}
\end{aligned}
$$

To calculate the Area of the circle:

For the purpose of this calculation, we shall take $\pi \approx \frac{22}{7}$.

$$
\begin{gathered}
A=\pi r^{2} \\
A=\left(\frac{22}{7}\right)\left(\frac{47}{7}\right)^{2} \\
=\frac{48598}{343} \\
=141 \frac{235}{343}
\end{gathered}
$$

To calculate the co-ordinates of D :

$$
\begin{gathered}
y=\frac{7}{8} x-2 \\
y=\frac{7}{8}(9)-2 \\
=\frac{47}{8}
\end{gathered}
$$

So the co-ordinates of D are ($9,47 / 8$).
To calculate angle CAD (making sure your calculator is set to DEGREES):
Let $\alpha=$ Angle CAD

$$
\begin{gathered}
\tan \alpha=\frac{\text { Opposite }}{\text { Adjacent }} \\
\tan \alpha=\frac{47 / 8}{47 / 7} \\
\tan \alpha=\frac{7}{8} \\
\tan ^{-1} \alpha=41.18592517^{\circ}
\end{gathered}
$$

To calculate the distance, BC :

$$
\begin{gathered}
\sin \alpha=\frac{\text { Opposite }}{\text { Hypotenuse }} \\
\text { Opposite }=\text { Hypotenuse }(\sin \alpha) \\
=\frac{47}{7}(\sin 41.18592517) \\
=4.421388081
\end{gathered}
$$

To calculate area of triangle ABC:

$$
\begin{gathered}
\text { Area }_{\text {Triangle }}=\frac{1}{2}(\text { base } \times \text { height }) \\
=\frac{1}{2}\left(4.421388081 \times \frac{47}{7}\right) \\
=14.84323142
\end{gathered}
$$

To calculate the area of the circle outside the triangle ABC:

$$
\text { Area } \text { required }=\text { Area }_{\text {circle }}-\text { Area }_{\text {triangle }}
$$

$$
\begin{gathered}
=141 \frac{235}{343}-14.84323142 \\
=126.8418998 \mathrm{~cm}^{2}
\end{gathered}
$$

